High miR156 Expression Is Required for Auxin-Induced Adventitious Root Formation via MxSPL26 Independent of PINs and ARFs in Malus xiaojinensis

نویسندگان

  • Xiaozhao Xu
  • Xu Li
  • Xingwang Hu
  • Ting Wu
  • Yi Wang
  • Xuefeng Xu
  • Xinzhong Zhang
  • Zhenhai Han
چکیده

Adventitious root formation is essential for the vegetative propagation of perennial woody plants. During the juvenile-to-adult phase change mediated by the microRNA156 (miR156), the adventitious rooting ability decreases dramatically in many species, including apple rootstocks. However, the mechanism underlying how miR156 affects adventitious root formation is unclear. In the present study, we showed that in the presence of the synthetic auxin indole-3-butyric acid (IBA), semi-lignified leafy cuttings from juvenile phase (Mx-J) and rejuvenated (Mx-R) Malus xiaojinensis trees exhibited significantly higher expression of miR156, PIN-FORMED1 (PIN1), PIN10, and rootless concerning crown and seminal roots-like (RTCS-like) genes, thus resulting in higher adventitious rooting ability than those from adult phase (Mx-A) trees. However, the expression of SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE26 (SPL26) and some auxin response factor (ARF) gene family members were substantially higher in Mx-A than in Mx-R cuttings. The expression of NbRTCS-like but not NbPINs and NbARFs varied with miR156 expression in tobacco (Nicotiana benthamiana) plants transformed with 35S:MdMIR156a6 or 35S:MIM156 constructs. Overexpressing the miR156-resistant MxrSPL genes in tobacco confirmed the involvement of MxSPL20, MxSPL21&22, and MxSPL26 in adventitious root formation. Together, high expression of miR156 was necessary for auxin-induced adventitious root formation via MxSPL26, but independent of MxPINs and MxARFs expression in M. xiaojinensis leafy cuttings.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Induction of root Fe(lll) reductase activity and proton extrusion by iron deficiency is mediated by auxin-based systemic signalling in Malus xiaojinensis

Iron is a critical cofactor for a number of metalloenzymes involved in respiration and photosynthesis, but plants often suffer from iron deficiency due to limited supplies of soluble iron in the soil. Iron deficiency induces a series of adaptive responses in various plant species, but the mechanisms by which they are triggered remain largely unknown. Using pH imaging and hormone localization te...

متن کامل

MicroRNAs Regulate Auxin Homeostasis and Plant Development

The phytohormone auxin (principally indole-3-acetic acid [IAA]) is a key regulator of cell expansion and division that plays numerous roles in plant growth and development, including stem elongation, phototropic and gravitropic responses, apical dominance, and lateral and adventitious root formation. Auxin can stimulate or inhibit cell growth depending on its concentration and location within t...

متن کامل

Localized induction of the ATP-binding cassette B19 auxin transporter enhances adventitious root formation in Arabidopsis.

Adventitious roots emerge from aerial plant tissues, and the induction of these roots is essential for clonal propagation of agriculturally important plant species. This process has received extensive study in horticultural species but much less focus in genetically tractable model species. We have explored the role of auxin transport in this process in Arabidopsis (Arabidopsis thaliana) seedli...

متن کامل

Plant Hormone Homeostasis, Signaling, and Function during Adventitious Root Formation in Cuttings

Adventitious root (AR) formation in cuttings is a multiphase developmental process, resulting from wounding at the cutting site and isolation from the resource and signal network of the whole plant. Though, promotive effects of auxins are widely used for clonal plant propagation, the regulation and function of plant hormones and their intricate signaling networks during AR formation in cuttings...

متن کامل

Phenotypic plasticity of adventitious rooting in Arabidopsis is controlled by complex regulation of AUXIN RESPONSE FACTOR transcripts and microRNA abundance.

The development of shoot-borne roots, or adventitious roots, is indispensable for mass propagation of elite genotypes. It is a complex genetic trait with a high phenotypic plasticity due to multiple endogenous and environmental regulatory factors. We demonstrate here that a subtle balance of activator and repressor AUXIN RESPONSE FACTOR (ARF) transcripts controls adventitious root initiation. M...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017